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DISCOVERY OF THE KALMAN FILTER AS A PRACTICAL

TOOL FOR AERCSPACE AND INDUSTR?

Leonard A. McGee and Stanley F. Sc,hmidt*

Ames Research Center

SUMMARY

The Kal_n filter in its various forms has become a fundamental tool for ana-

lyzing and solving a broad class of estimation problems. The first publicly known

application was made at NASA Ames Research Center in the early 1960s during feasi-

bility studies for cifcumlinear navigation and control of the Apollo space cap-

sule. This paper recounts the furtunate sequence of events which led the research-

ers at Ames Research Center to the early discovery of the Kalman filter shortly

after its introduction into the literature. Th sclentific breakthroughs and refor-

mulations that were neces3ary to transform Kalm_'s work into a useful tool for a

specific aerospace application are described. The resulting extended Kalman filter,

as it is now known, is often still referred to simply as the Kalman filter. As the

filter's use gained in popularity in the scientific co,rnunity, the problems of

implementation on sn_li _paceborne and airborne computers led to a "square-root"

formulation of the filter to overcome numerical difficulties associated with compu-

ter word length. The work that led to this new formulation is also discussed,

including the first airborn _ computer implementation and flight test which was

conducted in 1972. Since then the applications of the extended and square-root

formuiations of the Kalman filter have grown rapidly throughout the aerospace

industry.

INTRODUCTION

In 1960, Dr. Kalman published his now-famous paper, "A New Approach to Linear

Filtering and Prediction Problems" (ref. I). That paper made a significant contri-

bution to the field of linear filtering by removing the stationary requirements of

the Weiner filter and presenting a sequential solution to the time-varying linear

filtering problem. Kalman's solution was particularly suited to the dynamical state

estimation needs of the space age (ref. 2). Co_cnly known as the Kalman filter,

the new formulation had a major effect in related academic and engineering cir-

cles. Although the first uses of the Kalman filter were in aerospace applications,

the relative simplicity and versatility of the formulation resulted in its rapid

adaptation for utili_ation in many other fields. The Kaiman fiiter in its

various
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forms is clearly established as a funda_ntal tool for analyzing and solving a broad

class of _timatlo_ problems.

The events that led to the current widespread use of the Kalman filter are

recounted here to _h_ best of our recollections. The descriptions given in (ref. 3)

are expanded, giving greater insight ir to the many problem8 that had to be overcome,

as well as the extremely fortunate sequence of events that resulted in the discovery

of the filter and its successful implementation.

The paper describes how the need for a filter such as Kalman's arose from

NA_SA's early work on the manned lunar mission, even before that mission was selected

as a national program. Also described is why Kalman's work was introduced at a

near-perfect time and why this near-ideal solution to the midcourse navigation

problem might have _ne undiscovere_ except for a fortunate meeting between Dr.

Schmidt (one of the present authors) and Kalm_n.

Kalman's work was a large step forward, but its usefulness for the Apollo

mission was limited by certain features of the formulation. We recount the events

that resulted in the scientific breakthrough and the reformulation that transformed

Kal_n's work into the extremely useful tool that is now knowm as the "extended

Kal_n filter."

The reasons for and events that took place during the development of navigation

systems for the Apollo and Lockheed C-SA aircraft programs and the way in which the

results from those key programs led to a square-root Formulation of the Kalman

filter, which had features suitable for aircraft applications, are described. A

discussion then follows of the development of the first known aircraft flight exper-

iment in which the performance of a square-root for_Jlation coded for an airborne

computer was validated.

The paper concludes with a discussion of the tremendous range of problems to

which the extended and square-root Kalman filters are being applied in today's

highly technical world.

The authors acknowledge their indebtedness to Joseph R. Carlson, George P.

Callas, Eleanor V. Harper, John D. McLean, Rodney H. Perry, and Gerald L. Smith, who

assisted _terially with the analysis efforts; without their help and support, the

original circumlunar feasibility studies leading to the discovery of the Kalman

filter would have been impossible.

THE FIRST APPLICATION OF THE KALMAN FILTER: APOLLO MISSION

The Need for a New Filter

In the fall of 1959, Dr. Harry J. Goett, then Director of NASA's Goddard Space

Flight Center (GSFC), i_vited Dr. Sehmidt and other members of Dr. Goett's former

division at Ames Research Center (ARC) to meet with the Space Task Group located at

LL_
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Langley ResearchCenter to discuss the future mannedspacecraft program. (See

(ref. 4) for a history of the Apollo program.) Dr. Goett was eager to get

feasibility studies under way at the NASA research centers to _efine guidelines for

the manned lunar mission.

Of major interest to the present authors were the areas in which the Dynamics

Analysis Branch at Ames should concentrate its research efforts. The principal

outcome of many meetings of the Space Task Group was the identification _ two

potential areas of research for the Branch. The first was midcourse navigation and

guidance for the circumlunar mission, and the secor._ was the autopilot design for

large, flexible body liquid-fuel boosters.

The Dynamics Analysis Branch had only eight analytically oriented research

persons--too few to carry out two very complex research programs. The most logical

choice, considering personnel experience, seemed to be the booster autopilot design

problem. But after many discussions, enthusiasm grew for the midcourse navigation

and guidance problem, and there was finally a unanimous decision for the Branch to

work in that area. Certainly, it was an ambitious undertaking, one that presented a

greater challenge to Branch personnel than had been faced before.

The primary emphasis in the Branch was rapidly brought to bear on the need tc

develop the concepts and technology for a completely self-contained system. This

meant the software for the mission would have to be resident in a reliable, on-board

digital computer with considerable memory and relatively high computational speed.

The midcourse algorithms would have to be as efficient as possible. The system,

with pilot/navigator inputs, would have to navigate and guide the spacecraft from

injection into a circumlunar trajectory, around the Moon and back to Earth, satisfy-

ing very restrictive entry corridor requirements on return to Earth.

Having selected the problem area and directed our attention to a conceptual

design for a solution to the problem, it was clear that we were facing a rather

massive effort with a staff that was utterly inexperienced in many of the required

tasks (such as lunar trajectory analysis). Perhaps if we had fully comprehended the

necessary effort we would have reconsidered our choice of problem area for the

Branch research effort. Basically, we were starting with nothing in the way of

analytical software tools. Ames had an IBM 704, which would be our simulation

computer. Fortunately, Fortran was made available to us early in our research

efforts, but software for the machine was quite limited. For example, later on,

when we were preparing the software to do the Kalman filter matrix operations, we

had to write all of our own matrix-handling subroutines. We soon found, however,

that the double indexing needed for matrix operations ran so slowly that our matrix-

handling subroutines had to be rewritten to use single indexing. Otherwise, a

circumlunar trajectory with a Kalman filter would have taken hours of computer time.

The first step was to build a trajectory analysis program capable of simulating

a trajectory to the Moon and return. Fortunately, Dr. Clarence Gates and others at

the Jet Propulsion Laboratory (JPL) gave us invaluable assistance and counseling

based on their work in this area. Probably the most timely aid was in the form of

an ephemeris tape containing the positions of the Sun and the Moon versus time. By



mid-1960, we could calculate free-return trajectories to the Moon and were

investigating linear perturbation methods that looked promising for calculating and

implementing small velocity changes to simulate midcourse correction.

Most of the research was going well at that time with the exception of naviga-

tion; that is, the use of pilot observations of external bodies to esti_te the

vehicle state. We had assumed from the beginning that this would De accomplished by

the crew operating an inertially referenced optical sensor on the spacecraft to

measure the elevation, azimuth, and subtended angles of Earth and Moon. The ques-

tion was how to process such data in an efficient manner. To this end, we had

reviewed the iterative weighted, least-squares estimator in use by JPL and decided

that it was not only too complex for state-of-the-art on-board computers but would

also put a severe burden on the IBM 704 we were using for simulation. We had also

considered taking multiple optical tracking measurements and filtering them with a

polynomial. Although this appeared to be a simple enough procedure, the accuracy of

the resulting state estimation was not adequato for the level of optical measurement

accuracy that could be achieved.

Some of the staff had been working with Weiner filter theory for several years

and had made successful applications of that theory to the problems of guidance and

navigation for beam-rider and homing missiles. Because the lunar vehicle navigation

problem had obvious similarities to missile navigation, we wondered whether the

Weiner filter theory could be applied. The difficulties were the nonlinearity of

the problem and the requirement, for lunar vehicle navigation, of an irregular

series of discrete measurements (whereas missile navigation had assumed continuous

measurements). We could not find an approach that would permit applications of the

Weiner filter theory without making approximations that would either severely

restrict the observation system or destroy the inherent accuracy. Obviously, a new

approach was needed for computing the estimated state from on-board measurements--a

way that would not overburden our simulation facilities or an on-board computational

capability.

Discovery of the Kalman Filter

In retrospect it seems almost incredible that the next sequence of events

should have taken place and that Dr. Kalman's work should be so quickly recog-

nized. The authors recall those events in the following way. Dr. Schmidt, at Ames,

and Dr. Kalnm%n, at the Research Institute for Advanced Study (RIAS), had been

acquaintances for several years. In the fall of 1960, Dr. Kal_n, unaware of the

work we were doing, called and arranged to visit Dr. Schmidt to discuss topics of

mutual interest. It was during this very f_rtunate visit that Kalman presented his

now famous paper to members of the staff of the Dynamics Analysis Branch. Because

the staff had been thinking of filter theory as a way of _,andling the problem, the

presentation hit a responsive chord. In particular, the sequential solution fea-

tures of Dr. Kalman's formulation were of interest because they could certainly

relieve some of the computational problems we were facing with the IBM 704. Thus,

even though the theory was linear and our application nonlinear, Dr. Schmidt thought



the approach might have somemerit for our application and assigned key staff mem-

bers to carefully examine the paper.

That was not _n easy task and a great deal of difficulty was experienced in

understanding Dr. Ka_man's paper because of the relatively new state space approach

to control problems used by Dr. Kalman. The notation, as well as the concepts, used

by Dr. Kalman were also very difficult for practicing engineers to grasp. On his

next trip to GSFC, Dr. Schmidt arranged to meet with Dr. Kalman at RIIAS to discuss

the paper further. It was at this meeting that the method of applying Dr. Kalman's

_heory to a nonlinear system became clear to Dr. Schmidt. He realized that the

linear perturbation concepts we had been using in our guidance studies could be used

to produce the linear system needed to apply Dr. Kalman's theory. Thus, the combi-

nation of Dr. Kalman's linear filter theory with the _inear perturbation methods we

were already using gave us a potential solution to the nonlinear navigation problem

and also to some of the problems posed by the speed and storage limitations of the

IBM 704 computer. Clearly, the meeting at RIAS resulted in the breakthrough we

needed, and we immediately made plans to produce a digital simulation program to

evaluate and validate the Kalman formulation. Whether the Kalman filter would

provide the state estimation accuracies necessary for circumlunar navigation

remained an open question and was of considerable concern.

Modification of the Formulation

The trajectory analysis work that had been progressing in the meantime had

given us some insight into the problem of how to schedule the time of the simulated

on-board optical measurements and course corrections we planned to use to accomplish

the navigation and guidance function. The schedule called for optical measurements

to be taken in a short sequence, with the measurements evenly spaced iD time. The

sequences could be separated by relatively long periods of time. The starting time

of the measurement sequences and the timing of the course corrections would be

variables for later analysis. These features were permitted by the numerical inte-

gration routine used to solve equations of motion for the trajectory. The key

features of the routine were its ability to vary the integration step (time) over a

wide range and the ability to be stopped and restarted at any arbitrary time. The

variable step-size was critical to us because it brought the IBM 704 computation

time down to a value that at least let us consider doing the problem.

Dr. Kalman's original formulation would have required an on-board crew to make

a continuous sequence of optical measurements equally spaced in time throughout the

lunar mission, an impractical scenario. Therefore, to implement our measurement and

course-correction schedule, the original formulation had to be revised. The solu-

tion to the problem was obtained by decomposing the original formulation into a

discrete-time update portion and a discrete-time optical measurement update portion

which provided a much more natural and intuitively appealing way of expressing

Dr. Kalman's algorithm. Looking back, the decomposition seems almost trivial; at

the time, however, it was a major and critical step forward and one in which an

unrecognized error could have been disastrous.



The Extended KalmanFilter

The original studies using perturbation methods and the above mentioned decom-
position of the filter were based on a linearization about a nominal (reference)
trajectory, it soon becameapparent that a relinearization about the current esti-
mated state might offer substantial advantages over the technique previously used.

We reasoned that "on the average," the estimated state would be closer to the

actual, or true, state than to the reference, or nominal, state and thus the lin-

earity of the approximation would be retained better than with a nominal, or refer-

ence, state. The correctness of this presum_ption was borne out in a rather extreme

incident. An accidental error in input conditions to a simulation run caused the

true trajectory to remain in an orbit around Earth, but the estimated trajectory had

the proper starting conditions for a lunar transfer trajectory. The simulated

optical measurements used to estimate the position of the space vehicle were inten-

tionally sparse in the early part of the run because the trajectories were quite

nonlinear in that regicn. At first, the Kalman-filter estimator caused some rela-

tively large overshoots in the estimated state owing to the nonlinear effects, but

the estimated state soon successfully converged close to the true state. This

modification to the implementation has come to be known as the "extended Kalman

filter."

Development and Testing of the Fi_ter Simulation

The design of the digital simulation program proceeded fairly rapidly once it

was cle?rly understood how the Kalman filter w_s to be implemented. The transition

matrix for the discrete filter time update remained a problem, however. This matrix

was to be used to transform a position and velocity error state at one time into a

new error state at a later time. It is a key element in the Kalman-filter

formulation.

Another group at Ames specializing in software accepted the task of developing

the programs to compute the transition matrix using data from a stored lunar trajec-

tory. The: data were not equally spaced in time, and as a result interpolation would

be required to retrieve the desired position and velocity at a specified time. A

set of variational equations would then be evaluated from the trajectory data to

produce the transition matrix. It was thought that this approach would be rela-

tively fast and would reduce the computational time on the IBM 70_ over that of the

straightforward approach of simply solving the variational equations by integrating

an additional set of 18 complicated, second-order differential equations• As it

turned out, the software development task was much more difficult than originally

thought.

By the time the simulation program implementing the Kalman filter was coded in

Fortran and the coding extensively verified, the group working on the transition

matrix expected their software could be completed in a few additional weeks. Every-

one was extremely eager to give the Kalm_n-filter program a try. When the time came

and passed for the transition matrix program to be operational, it was becoming
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increasingly clear that work should be stopped on this approach because it was

producing software that was taking much longer to execute than was originally

expected. The only remaining alternative was to integrate the additlona_ 18 second-

order differential equations along with those for the true, reference, and estimated

trajectories. ;[though this was a setback in the IBM 704 time budget for the

Kalman-filter simulation program, compensating savings were made by the discovery

that the transition matrix could be inverted merely by rearranging terms.

At this point we were about 6 months behind the schedule we had set for our-

selves. It was decided to build a test program to debug the modular software for

computing the transition matrix. In this way, the modular elements could be used

directly by the Kalman-filter simulation program with very few changes. The test

program was put together in a few days from coding that was borrowed from other

programs we had developed. Very little debugging time was required because most of

the complex software was by then already ranning in other programs and because the

problem was very straightforward. This new program produced the transition matrix

from injection into the translunar trajectory to periselene (closest approach to the

Moon). It is also used to produce a transition matrix from trans-Earth injection to

perigee. The matrix elements were then punched on cards to be read into the simula-

tion program for use with the guidance laws to compute course corrections.

In the Kalman-filter program, the transition matrix for a time-update of the

covariance matrix was always available by integrating the 18 second-order differen-

tial equations in the simulation program from injection to the time of the first

optical measurement and then from that measurement time to the next and so on. The

product of all these matrices gave the transition matrix from injection to the time

of the latest optical measurement. This matrix was required by the mideourse cor-

rection algorithm. The variational equations could be solved about either the

reference or the estimated states. Later the program was modified to do the return

(inbound) trajectory by reinitializing at periselene with a,lother stored transition

matrix from periselene to Earth reentry.

The digital simulation program was designed to integrate nonlinear differential

equations for the true trajectory, the nominal (or reference) trajectory, and the

estimated trajectory. The simulated optical measurements were calculated as func-

tions of the true state plus additive biases and noise. The Kalman-filter algorithm

accepted these measurements and provided incremental changes in the estimated

state. The difference between the estimated state and nominal state was used in the

midcourse correction algorithm. This algorithm gave the _V vector required to

drive the estimated position to the nominal position at periselene at the end of the

outbound and perigee at the end of the inbound trajectory. To simulate the mid-

course correction, the computed 6V vector was added to the estimated trajectory

directly. Random magnitude and pointing errors were added to the computed AV

:tot to simulate control system errors, and the result was added to the true

aJectory. The covariance matrix of the estimated state was also increased in a

manner corresponding to the statistics of the simulated control system errors.

When the simulation program was finally ready for a test run on the IBM 704, it

took a little over an hour of execution time. The first run showed disappointing



results in the state estimation scheme. Naturally, we were shocked. What if the

Kalman filter did not work? men, an error was found in the way we were calling a

subroutine. On the second run everything worked fine{

By early 1961, the si_lation program had been used extensively co validate the

extended Kalman filter and the guidance laws we had developed. OUr very encouraging

results indicated that on-board optical measurements combined with the knowledge of

the equations of motion could yield adequate accuracy for the circumlunar

navigation/guidance problem. This was the breakthrough that we had set out to

achieve at the beginning when we had selected the midcourse navigation and guidance

for the circumlunar mission as the study area for the Dynamics Analysis Branch. At

that time it was clear that we had achieved a potentially significant result for

on-board navigation systems. Our studies indicated that the extended Kalman filter

wculd give accuracies comparable to those of weighted least-square estimators, but

with a tremendous reduction in requirements for on-board computer memory and compu-

tational speed. We had not, however, verified that the extended Kalman filter could

be mechanized and operated properly with the flight computers available at this

time.

As it turned out, we had been fortunate in the way we had chosen to mechanize

the computations for the extended Kalman filter. The order chosen in which to

multiply the three matrices in the measurement update equation, that is, (KH)P

rather than K(HP) was the most numerically sbable of the two possibilities we could

have selected. As a result, we had no apparent computer round-off difficulties. If

we had done things differently, however, we might have found that double-precision

matrix operations were necessary with a resultant large increase in computer time,

which, in turn, would have _de the filter appear much less attractive for space-

craft applicaticns.

Dissemination of the Simulation Results

As we recall, two of the first persons (outside of Ames) that we told of our

results were Dr. John V. Breakwell and Dr. Charlotte Striebel, both of Lockheed

Missiles and Space Company (LMSC). Both Dr. Break-well and Dr. Striebel were suffi-

ciently impressed with the results to begin further research on their part to

explain the equivalences to other trajectory determination methods in use at the

time.

At about this same time in early 1961, Dr. Schmidt told Dr. Battin of our

results. Dr. Battin was at t_ Instrumentation Laboratory of the Massaehusets Insti-

tute of Technology and was engaged in studies of the Apollo mission. Dr. Battin had

been independently engaged in work along lines similar to those of Dr. Kalman but

was unfamiliar with Dr. Kalman's work. In September 1961, Dr. Battin published an

Instrumentation Laboratory Report titled "A Statistical Optimizing Navigation Proce-

dure for Space Flight" (ref. 5). In the introduction to his report, Dr. Battin made

the following statement:
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The formulation of an optimum linear estimator as a recursion

operation in which the current best estimate is combined with

newly acquired information to produce a still better estimate

was presented by Kalman. The author is indebted to

Dr. Stanley F. Schmidt for directing his attentions to

Kalman's excellent work. In fact, the original application of

Kalman's theory to space navigation was made by Schmidt and

his associates. The work described in the following sections

of this paper was done without any detailed knowledge of

Schmidt's activities ....

Dr. Battin continued to investigate using the filter fo: application to the Apollo

navigation system. Later, Potter (ref. 6), working with Dr. Battin at MiT, devised

the first square-root filter implementation, which was used for the Apollo system.

His formulation could not handle random forcing functions, out it was useful for

implementation in small-word-size on-board computers, such as that of the Apollo

system. Still later, Potter's implementation was included as part of other square-

root implementations that could handle random forcing functions. Some of these

implementations will be discussed later.

The word of our work began to spread rapidly throughout scientific, academic,

and engineering circles. During the summer and fall of 1961, many visitors from all

parts of the country had come to discuss the work we had done. In the summer of

1961 two papers (refs. 7 and 8), which were shortened versions of two NASA reports

(refs. 9 and 10) published in the following year, were presented in San Francisco at

an American Astronautical Society (AAS) conference. This was the first formal

introduction of our work on navigation and guidance studies for the circumlunar

mission before a group of scientists and engineers. Because of the extreme interest

in the Apollo program and the potential our work held for that program, extensive

informal discussions were held after the conference with many representatives of

both government and industry.

During the early period, Dr. Schmidt and his staff of researchers at Ames can

be credited with the following technical breakthroughs which led to this first major

application of the Kalman filter.

I. Demonstration that Kalman's original theory could be adapted to nonlinear

problems.

2. Development of the extended Kalman filter, which linearized about the

current best estimate of the state to reduce the effects of nonlinearities in the

problem.

3. Decomposition and reformulation of Kalman's original algorithm into sepa-

rate time-update measurement-update portions so that measurements could b_ prcce_3_d

at any arbitrary time interval.

9
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4. Demonstration, by meansof a comprehensive digital simulation, using items

(I)-(3) above, of the Kalman filter's potential application to a nonlinear, on-board

spacecraft navigation and guidance problem.

5. Dissemination of the results of the simulation work to the M!T Instrumenta-

tion Laboratory for possible inclusion in the Apollo on-board guidance and control

system.

6. Dissemination of inforn_tion on the Ames Kalman filter work to a large

segment of the _cientific and aerospace co,unities through presentations and formal

papers.

It should be noted that at this point in time (1961) no problems had been

experienced in the digital simulations owing to truncation or modeling errors.

Later, however, many researchers began to report substantial problems of instability

with Kalman filtering, problems on which considerable effort and research would De

expended.

FURTHER FILTER IMPROVEMENTS

Support for the Apollo Mission

Following Dr. Schmidt's departure from ARC in late 1961 to Join Lockheed Mis-

siles and Space Company, the staff at ARC continued to apply the extended Kalman

filter to problems of interest to NASA for the Apollo program.

From mid-1962 to mid-1964, research at ARC was directed to three general areas

uslng essentially the same software with the same Earth-Moon and Moon-Earth trajec-

tories:

I. To study the effect of modeling errors of secondary importance and of off-

design conditions on optimal estimation of a space vehicle trajectory.

2. To study the effect of the relatively short word length accommodated by

most of the airborne computers of that time.

3. To study the effect on midcourse guidance of using ground radar tracking in

addition to on-board observation data. It was during the early phases of this work

that the "divergence" problem was first noticed. Apparently, the problem chosen for

the initial studies with the extended Kalman filter was not particularly sensitive

to nonlinearities, effects of computer round-off, unmodeled parameters, or a priori

statistics. As mentioned earlier, the computer round-off problem was first noticed

and occurred when the sequence of multiplying three matrices together was changed.

Inittall}, this led to the assumption that computer round-off was the only prob-

lem. Our discovery was comunicated to Dr. Schmidt by Mr. Gerald Smith, but little

was done at ARC at this _ime because the problem and the filter formulation we were

using seemed quite stable. When undertaken some time later, the first attempts to

10
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fix the computer rour s-_3f problem involved working with the covarianee matrix P

to make it symmetric wlth nonnegative eigenvalues. After computing P in the

1ormal way, some fixes were tried, four of which are mentioned here. First, by

forcing P to be symmetric by selecting either the upper or lower off-dia{onal

elements and using on!y those diagonal elements to form a symmetric matrix. 3eccr_d,

by averaglng the off-diagonal terms to force symmetry. Third, the same as 5he

second, then computing the off-diagonal correlation coefficients, if any ma_niz_aes

were greater than one, the coefficients would be printed and the prograz, J 5toppeC.

And fourth, by adding a s,_ll positive number to all of the diagonal terms of the

eovariance matri:[, P, after measurement and time-update operations. This fix asso-

ciated numerical truncation errors with process noise, thus _liowing an increase in

the covariance matrix after numerical operations.

As we recall it, the third and fourth fixes worked best but during the time

that work was going on another problem was being uncovered, both at ARC and el2e-

where. The new problem was most apparent after a series of very accurate measure-

ments had been processed by the filter, causing the covariance matrix P to become

so "small" that additional measurements would be essentially ignored by _he

filter. When this happened, only very small corrections to the estimated state

would be computed as the result of a measurement, and the estimated state would

diverge from the true state. The basic problem here is due to modeling errors. The

use of "pseudonoise" in the time-update proved quite effective against this problem.

Other researchers were encountering computational difficulties because of

round-off. For example, a Honeywell, Inc. interoffice memorandum by R. C. K. Lee,

dated July 8, 1964, recommended that the syn_netry problem with P be solved by

computing only the diagonal plus the upper triangular elements of the matrix. The

mei_orandum also recommended that the problem of P becoming negative-definite after

a measurement update be overcome by using the equivalent but more symmetric

expression

Pt+1 [I Kt+IH]Mt, I[I Kt+IH] T= - - + Kt+IRK +I '

where

Mt+1 : #p T + Q ,

Kt+ I : Mt+IHT(HMt÷IHT + R)
-I

This equation for Pt+1 is frequently referred to as Joseph's formulation

(ref. 11). It reduces to Kalman's measurement equation when the gain Kt+ ! is

opti_l, as shown. It is also the general equation for the covariance matrix after

a state change owing to an arbitrary gain.

The results of the filter research in support of the Apollo program

(refs. 12-14) made clear the following:

I. How to include astrodynamic constant uncertainties and bias-type errors in

the estimation process, and how to compute the performance of a system subjected to

unrecognized or ignored bias errors.
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2. Thai for the particular cL._o_lunar trajectories being in,/e_ti&Jted, the

simulat[uon computer word mantissa of 2i bits was adequate_ but that some computa-

tions could be carried out with the lesser precision. It also verified that when

the covariance matrix P is a too-optimistic representation of estimated state

errors, external measurements are given too little weight.

3. That ground radar data are generally superior to on-board measurem nts for

estimating the trajectory of the spacecraft, but that use of radar data does not

save significant midcourse correction fuel, and control of the trajectory endpoint

is not greatly enhanced. These results supported the ultimate decisions to have the

primary Apollo navigation conducted from the ground, using ground radar data with a

backup system on the spacecraft. It was an important and timely result.

Application of t_e Filter to the Agena Program

Meanwhile, at the Lockheed Missiles and Space Company, in 1961, Dr. Schmidt had

his first oppcrt_nity to process actual measurement data with the extended Kalman

filter developed at ARC. The purpose of the effort was to validate the performance

of the Agena upper sta_e, using Earth-based tracking data from the downrange sta-

tions and telemetry data from the vehicle. A general-purpose postflight analysis

program was developed which combined tracking data from several stationj with the

model of the equations of motion for the vehicle. The error state included

tracking-measurement biases and location errors, as well as coefficients of a

propulsion model for the thrust of the Agena upper stage.

The procedure developed for the operation was to use the tracking

data during coast phases to estimate position and velocity and ccvarianee matrix of

errors at the initiation ana termination of the thrust phase. The thrust phase was

thep handled by starting the program with the initial state and covariance matrix

(from coast-phase da_..), with the error state expanded to include coefficients of

the thrust model. Tracking data during the thrust phase was processed in the normal

manner. At the termination of the thrust, the state estimate from the postburn

tracking d. Ca was used as a measurement of the six-component state vector, with its

covariance matrix used to characterize the accuracy.

This development added the following techniques to the applications technology
of the Kalman filter:

I. A bad-data rejection technique was developed which compared the measurement

residual magnitude to its standard deviation as computed f_'o_ the Kalman-filter

measurement update algorithm. If the resisual magnitude exceeded n times the

standard deviation, the measurement was rejected. The value of n used was 3,

corresponding to a 3-3igma residual ,_%gnitude test.

2. The Kalman filter was used as a data compression algorithm to form an

equivalent measurement and eovariance matrix from the multitude of measure_nents

taken during the coast phases of the vehicle.

%
{
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3. An iterative approach using backward integration and forward filtering was

developed to remove effects of nonlinearities from the estimate. _nis was not data-

smoothing, but simply an equivalent procedure to the weighted, least-squares esti-

mators in use at that time.

4. The Kalman filter was used to estimate parameters in the measurement and

equation-of-motion models.

Development of the Kalman-Schmidt Filter

After moving to Philco-WDL (now Ford Aerospace and CommLnications Corp.) in

1962, Dr. Sch_midt began work on the development of a general-purpose error-analysis

program for GSFC. During this effort, the so-called Kalman-Schmidt filter (ref. 15)

was developed, largely as a result of the encouragement of Dr. F. 0. Von Bun at

GSFC. Earlier, the extended Kalman filter had been referred to by some authors

(ref. 16) as the Kalman-Schmidt filter, probably because of a desire to give credit

for the application technology which resulted in the extended Kalman filter. The

"Kalman-Schmidt" filter as referred to here, includes the effects of (but does rot

solve for} &_lected error states. As a result, a means of optimally compensating

for modeling errors is provided, when it is known which model errors in the filter

equations are significant. This filter was provided as one option in the general-

purpose error-analysis program delivered to GSFC (ref. 17).

In addition to the Kalman-Schmidt filter, the developments at Philco-WDL added

the following techniques to recursive filtering technology:

I. General computational techniques for saving machine time by taking account

of the sparsity of the trarsition matrix and symmetry of the covariance matrix.

2. Mathematical formulation for comb ning on-board inertial sensor measure-

ments with ground-tracking data.

3. Ad hoe technique _'ur adding pseudorandom forcing functions to minimize the

effects of numerical errors.

DEVELOPMENT OF THE SQUARE-ROOT FORMULATION

The C-SA Aircraft Navigation System

By 1966, the advantages of the extended Kalman filter were widely recognized.

When Lockheed became the prime contractor for the C-5A aircraft, the Kalman filter

was specified for the navigation system. The contract for the C-5A navigation

system was won by Northrop Corp., which, in turn, hired Dr. Schmidt as a consultant

for the Kalman-filter development. The filter combined inertial data and data from

various navigational aids to produce the state estimate of the aircraft. This was

the first opportunity either of the authors had been afforded to participate in the

13



development of a real-time system on boa, u an aircraft, even though they had hoped

for a NASA program as early as 1961. The C-SA system, to the best of the authors'

knowledge, was the first real-time application of a Kalman filter on board an

aircraft.

During the development of the C-5A navigation system, the real-world problems

of selecting appropriate error states, adding error estimates to the system outputs,

working with a limited word size, and making the whole computational burden work

within the time-frames of small computers had to be confronted. Many of the model

and numerical compensation techr !ques (refs. 18 and 19) were put to a demanding test

by this developmental work. Also, data compression metnods that use measurement

averaging for saving computational time at a small expense in accuracy were per-

fected by John Weinberg while working with Schmidt and Lukesh at Northrop

(ref. 20). This development definitely pointed out the need for a general square-

root filter formulation that could include random forcing functions and wor_ pPop-

erly with the fixed-point arithmetic of the available on-board computers; that is, a

method was needed wherein the filter's error covariance would be computed and propa-

gated in square-root form and would therefore require less computational precision

to maintain filter stability. However, because such a formulation was not available

for this system, the standard extended Kalman algorithm, with the epsilon tech_lique

and other ad hoe procedures, was used for controlling numerical problems caused by

round-off (refs. 18 and 20).

The additional complexity of making an extended Kalman filter work with the

C-5A navigation system had thoroughly convinced Dr. Schmidt of the need for a

square-root formulation including random forcing functions for airborne applica-

tions. Being aware of Potter's square-root measurement update formulation for the

Apollo mission, he personally made several attempts to find an efficient square-root

filter method that would allow use of random forcing functions in the time-update

algorithm. In early 1968, he successfully developed a method (refs. 21 and 22) that

looked promising for application on a small, fixed-point on-board computer. (The

reader should consult reference 23 for a good sum_ary of the history of the square-

root filter development during this time.)

Flight Test of RAINPAL with the First Airborne Square-Boot Filter

In 1969, Mr. L. A. McGee (one of the present authors) proposed a flight-test

program to support the Shuttle development work by testing the Kalman filter in an

on-board configuration to validate its performance with a highly accurate ranging

device manufactured by Cubic Corporation of San Diego, California. Studies had

indicated that the potential navigational accuracy of such a system was so great

that a highly accurate and independent assessment of its navigational performance

would be essential, if the results were to be accepted b, the scientific commun-

ity. The test site meeting these requirements was the Army's White Sands Missile

Range (WSMR) in New Mexico. At the time, the cinetheodolite system in operation on

the WSMR test range was believed to be the most accurate system in the nation for

determining the actual position and velocity of an aircraft during approach,

14



ORiGt._L- F;X'E _

OF POOR QUALITY

landing, and rollout. The flight-test aircraft was to be a Convair CV-340 with a

gross takeoff weight of 44,000 lb. The on-board computer would be a ruggedized

XDS-920 with a 24-bit-word length and a 32K memory. Based on previous studies of

the effect of computer word length on Kalman-filcer performance and the limited

amount of memory available, as well as the need to avoid as many numerical dLffi-

culties with the Kaln_n filter as possible, the decision was made to incidde in this

project an evaluation of a square-root formulation of the Kalman filter _hat _ould

include random forcing functions.

In 1970, McGee, G. L. Smith, and others at ARC issued a request for proposal

for the development of software to implement and test (in flight) a square-root

Kalman filter with random forcing functions on a 24-bit, fixed-point ×DS-920 compu-

ter along with such other software as would be required ir order to develop a com-

plete airborne navigation system. This system, later called RAINPAL, was to be a

precision approach and landing navigation system.

The competition for the software development work on the RAINPAL system was won

by Analytical Mechanics Associates, Inc. (gMA), based on the square-root formulation

capable of handling random forcing functions which had recently been developed by

Dr. Schmidt, who would be leading the AMA team. The original formulation used

Potter's algorithm for a measurement update and a modified Gram-Schmidt algorithm

for the time update in order to include the random forcing functions. The Gram-

Schmidt triangularization algorithm was used to reduce the non-square augmented

square-root covariance matrix to a square form required by the square-root filter

formulation. Mr. Paul Kaminski, a doctoral candidate at Stanford University

{ref. 23), demor_strated to Dr. Schmidt that another triangularization algorithm _y

Householder could be used for the time update and save computational operations over

the modified Gram-Schmidt algorithm. At this time, it made little difference which

algorithm was implemented, so the decision was made to proceed using the faster

Householder algorithm. Although Potter's algorithm was used in the Apollo system,

the RAINPAL system is believed to be the first application of the complete square-

root filter technology, including process noise, on-board an aircraft.

The RAINPAL system was initiated at ARC but, before the flight tests were

started, it became a joint program with NASA's Manned Spacecraft Center (MSC) and

the Army's Instrumentation Directorate at WSMR (WSMR-ID). Ames' interest was that

of flight testing and validating a square-root Kalman filter with inertial aiding;

MSC's interest was to investigate new concepts which might be suitable for naviga-

tion of the Space Shuttle Vehicle (SSV); and the WSMR-ID interest was a desire to

investigate new concepts offering promise for a future instrumentation system at
WSMR.

Overall, the square-root Kalman filter was under considerable scrutiny. Fail-

ure caused by divergence, computer round-off, or many other potential causes would

have been a severe blow to the proponents of the square-root-filter technology. _he

square-root filter, newever, performed flawlessly once it had been debugged earl_in
the software development, in fact, it soon became possible to place the square-_ot

Kalman filter above all suspicion when software problems occurred. With the stan-

dard formulation, the filter would always have been suspect because of its
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propensity to diverge or develop negative eigenvalues, which could cause very

peculiar transients in the navigation estimate.

It is rare in the development of a system such as RAINPAL that the opportunity

for early validation is possible. The RAINPAL validation (refs. 24-26) was provided

by the theodolite trackir_ system at WSMR, which is nationally recognized for its

accuracy. The flight-test results showed that with only three range measurements

versus seven theodolites, on the final approach to touchdown the RAINPAL system gave

position and velocity estimates that were smoother and had accuracies of the same

order as those of the WSMR system. Obviously, the RAINPAL system could be operated

as an independent reference system against which other systems could be tested or
evaluated.

Since the fllght test of the RAINPAL system in January 1972, Dr. Schmidt has

designed several other square-root-filter applications for aircraPt systems

(ref. 27), including systems for ARC, which were flight tested on ....TOL aircraft and

on helicopters. The same basic square-root approach developed for the RAINPAL

system was used in these filters. The early versions of these filters used an

experimental microwave landing system (MLS) ca!led MODILS as a primary landing aid

(refs. 28-31). The later versions used a prototype MLS and were flight tested on a

helicopter (refs. 32 and 33).

Other Airborne Applications of a Square-Root Filter

During the time the RAINPAL system was being readied for flight test at WSMR,

other researchers were also developing square-root Kalman filters for airborne

applications. One of the best examples of this work was done by Intermetrics, Inc.

for the Completely Integrated Reference Instrumentation System (CIRIS) unOer devel-

opment at Hollo_an Air Force Base. This system was very :imilar to the RAINPAL

system in that it employed inertial aiding from _n inertial navigation system and

also _mployed precision measurements to transponders many miles apart on the

ground. The precision ranging system was a Cubic CR-100 system, which produced both

range and range rate from the aircraft to the ground transponder. This was a later

and much improved version of the Cubic system used by the RAINPAL system, which

provided only precision range from the aircraft to the ground transponder system.

Details of this work were published in 1973 by Widnall (ref. 34), who described

simulation results for a new square-root algorithm devised by Carlson (ref. 35).

Carlson's algorithm maintained the covariance square-root matrix in triangular form,

but, more importantly, reduced the computation time from that of the Householder/

Potter method. This was a significant step forward, because for a moderate number

of states, Carlson's method would approach the speed of the standard extended

Kalman-filter formulation. This improvement in speed substantially overcame one of

the most serious complaints leveled against the square-root formulation.

16



The Square-Root Filter Successfully Tested in Space

In 1975 Bierman (ref. 36) introduced his U-D factorization of the Kalman filter

which appears to be the most efficient s%uare-root method to be developed '-date:

it uses only slightly more computer time than the standard extended Kalman _ -er.

(It should be noted that the U-D factorizatiol, is not actually a square-root method

in that _hree matrix prcduets are required to define the covar£ance matrix. With

this a gorithm there is no requirement for square-root operations.) This work,

carried out at JPL draws on the work of Dyer and McReynolds in 1969 (ref. 37) whose

filter algorithms were successfully used for the navigational computations on the

Mariner 10 Venus-Mercury space mission in 1973. This success further established

the reliability of the sequential square-root filter concept for real-time opera-

tions. Thus, except for the intuitive familiarity provided by the standard extended

Kalman filter, there seem to be ample reasons for using the square-root formulation

in all future applications.

Two different types of square-root filters have been developed. The first may

be regarded as a factorization of the standard extended Kalman filter algorithm; it

basically leads to the square root of the error covariance matrix. The second

involves the square root of the information matrix, which is defined as the inverse

of the error covariance matrix. Each of these algorithms has attributes to recom-

mend it for certain applications.

CONCLUDING REMARKS

It is clear that the relatively simple and straightforward sequential, extended

Kalman filter used by the authors in the early 1960's can be adequate as a fundamen-

tal analytical tool for solving some estimation problems. Certainly, persons

attempting to construct a Kalman filter without experience would be tempted to take

this route because of the intuitive statistical familiarity. However, success or

failure with this approach may be dependent on many factors, such as computer round-

off errors, inadequate statistical models and nonlinearities in the problem, any or

all of which may trigger the filter's potential instability or inaccuracy. Some

rather pragmatic yet effective solutions to some of these problems have been

devised, as we have seen in the foregoing history. Which of the pragmatic solutions

to use often depends on correctly identifying the problem and applying the proper

amount of ad hoc stabilization or "fix." If the filter is being run on a large

machine, extra precision arithmetic may be a reliable solution to the problem of

numerical instability, but stability problems may still remain because of mismodel-

ing. In the case of an airborne application, extra precision is often not a practi-

cal alternative.

It appears that those experienced in applying Kalman filters to real-world

problems are abandoning the ad hoc stabilization techniques and the standard filter

formulation in favor of algorithms that are numerically better conditioned. The
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square-root filter, by its nature, is inherently more stable and better conditioned

than the standard extended Kalman-filter formulation.

Square-root algorithms have gained acceptance rather slowly despite their

superior performance as reported, for example i_: (refs. 24,25,32-34). Some of the

reluctance of potential users probably stems from the fact that the early algorithms

ran slower than the standard Kalman formulation, and the faotorization techniques

appeared too complicated and used too much computer storage as well as computer

time.

As mentioned earlier, the Kalman filter has been used in a variety of fields.

Recently, a special issue of the IEEE Transations on Automatic Control (ref. 38) was

devoted to papers on applications that were as wide ranging as possible in their

subject matter. The papers cover such diverse subjects as spacecraft orbit deter-

mination, prediction of cattle populations in France, radar tracking, navigation,

ship motion, natural gamma ray spectroscopy in oil- and gas-well exploration, mea-

surement of instantaneous flow rates, and estimation and prediction of unmeasurable

variables in industrial processes, on-line failure detection in nuclear plant

instrumentation, and power station control systems. In many cases, the solutions in

these papers were implemented and were operationally successful. Indeed, the broad

applieation of the filter to seemingly unlikely problems suggests that we have only

scratched the surface when it comes to possible applications, and that we will

likely be amazed at the applications to which this filter will be put in the years

to come.

This history of Kalman filtering has naturally dwelt on the events that took

place at _RC, LMSC, Philco-WDL, and Analytical Mechanics Associates, Inc, The

recording of those events is elmost totally dependent on the recollections of and

personal contacts made by the authors. Omissions in this work, of which there are

undoubtedly some, should be attributed to our ignorance of some pertinent events,

failures of memory, the inevitable limitations of time, and to the mushrooming

publication of papers about the Kalman filter which has taken place since the early

1960's. For those interested in further details, the authors counsel a perusal of

the various references cited herein and of the many other papers they in turn are

certain to suggest.

I
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